推广 热搜: 各学科学习方法  学习方法  学科学习方法  脑力开发  演讲与口才  小学学习方法  记忆力  初中学习方法  资讯  学习啦——方法网 

人教版初三数学上册全册教程及作业题

   日期:2020-07-15     来源:www.vqunkong.com    作者:智学网    浏览:486    评论:0    
核心提示:人教版初三数学上册全册教程及作业题(带答案),以下是由无忧考网整理发布。《人教版初三上册全书教程》第二十一章 二次根式 教

人教版初三数学上册全册教程及作业题(带答案),以下是由无忧考网整理发布。
《人教版初三上册全书教程》
第二十一章 二次根式
教程内容
1.本单元教学的主要内容:
二次根式的定义;二次根式的加减;二次根式的乘除;最简二次根式.
2.本单元在教程中的地位和功效:
二次根式是在学完了初二下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学常识的基础.
教学目的
1.常识与技术
(1)理解二次根式的定义.
(2)理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0).
(3)学会 = (a≥0,b≥0), = ;
= (a≥0,b>0), = (a≥0,b>0).
(4)知道最简二次根式的定义并灵活运用它们对二次根式进行加减.
2.过程与办法
(1)先提出问题,让学生探讨、剖析问题,师生共同总结,得出定义.再对定义的内涵进行剖析,得出几个要紧结论,并运用这些要紧结论进行二次根式的计算和化简.
(2)用具体数据探究规律,用不完全总结法得出二次根式的乘(除)法规定,并运用规定进行计算.
(3)借助逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.
(4)通过剖析前面的计算和化简结果,抓住它们的共同特征,给出最简二次根式的定义.借助最简二次根式的定义,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.
3.情感、态度与价值观
通过本单元的学习培养学生:借助规定准确计算和化简的严谨的科学精神,经过探索二次根式的要紧结论,二次根式的乘除规定,进步学生观察、剖析、发现问题的能力.
教学重点
1.二次根式 (a≥0)的内涵. (a≥0)是一个非负数;( )2=a(a≥0); =a(a≥0)及其运用.
2.二次根式乘除法的规定及其运用.
3.最简二次根式的定义.
4.二次根式的加减运算.
教学难题
1.对 (a≥0)是一个非负数的理解;对等式( )2=a(a≥0)及 =a(a≥0)的理解及应用.
2.二次根式的乘法、除法的条件限制.
3.借助最简二次根式的定义把一个二次根式化成最简二次根式.
教学重要
1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难题.
2.培养学生借助二次根式的规定和要紧结论进行准确计算的能力,培养学生一丝不苟的科学精神.
单元课时划分
本单元教学时间约需11课时,具体分配如下:
21.1 二次根式 3课时
21.2 二次根式的乘法 3课时
21.3 二次根式的加减 3课时
教学活动、习题课、小结 2课时
21.1 二次根式
第一课时
教学内容
二次根式的定义及其运用
教学目的
理解二次根式的定义,并借助 (a≥0)的意义解答具体题目.
提出问题,依据问题给出定义,应用定义解决实质问题.
教学重难题重要
1.重点:形如 (a≥0)的式子叫做二次根式的定义;
2.难题与重要:借助“ (a≥0)”解决具体问题.
教学过程
一、复习引入
(学生活动)请同学们独立完成下列三个问题:
问题1:已知反比例函数y= ,那样它的图象在第一象限横、纵坐标相等的点的坐标是___________.
问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那样AB边的长是__________.
问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那样甲这次射击的方差是S2,那样S=_________.
老师点评:
问题1:横、纵坐标相等,即x=y,所以x2=3.由于点在第一象限,所以x= ,所以所求点的坐标( , ).
问题2:由勾股定理得AB=
问题3:由方差的定义得S= .
二、探索新知
很明显 、 、 ,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,大家就把它称二次根式.因此,一般地,大家把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.
(学生活动)议一议:
1.-1有算术平方根吗?
2.0的算术平方根是多少?
3.当a<0, 有意义吗?
老师点评:(略)
例1.下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y≥0).
剖析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0.
解:二次根式有: 、 (x>0)、 、- 、 (x≥0,y≥0);不是二次根式的有: 、 、 、 .
例2.当x是多少时, 在实数范围内有意义?
剖析:由二次根式的概念可知,被开方数必须要大于或等于0,所以3x-1≥0, 才能有意义.
解:由3x-1≥0,得:x≥
当x≥ 时, 在实数范围内有意义.
三、巩固训练
教程P训练1、2、3.
四、应用拓展
例3.当x是多少时, + 在实数范围内有意义?
剖析:要使 + 在实数范围内有意义,需要同时满足 中的≥0和 中的x+1≠0.
解:依题意,得
由①得:x≥-
由②得:x≠-1
当x≥- 且x≠-1时, + 在实数范围内有意义.
例4已知y= + +5,求 的值.
若 + =0,求a2004+b2004的值.
五、总结小结(学生活动,老师点评)
本节课要学会:
1.形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.
2.要使二次根式在实数范围内有意义,需要满足被开方数是非负数.
六、布置作业
1.教程P8复习巩固1、综合应用5.
2.选用课时作业设计.
3.课后作业:《同步练习》
第一课时作业设计
一、选择题 1.下列式子中,是二次根式的是( )
A.- B. C. D.x
2.下列式子中,不是二次根式的是( )
A. B. C. D.
3.已知一个正方形的面积是5,那样它的边长是( )
A.5 B. C. D.以上皆不对
二、填空题
1.形如________的式子叫做二次根式.
2.面积为a的正方形的边长为________.
3.负数________平方根.
三、综合提升题
1.某工厂要制作一批体积为1m3的商品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?
2.当x是多少时, +x2在实数范围内有意义?
3.若 + 有意义,则 =_______.
4.使式子 有意义的未知数x有( )个.
A.0 B.1 C.2 D.无数
5.已知a、b为实数,且 +2 =b+4,求a、b的值.
第一课时作业设计答案:
一、1.A 2.D 3.B
二、1. (a≥0) 2. 3.没有
三、1.设底面边长为x,则0.2x2=1,解答:x= .
2.依题意得: ,
∴当x>- 且x≠0时, +x2在实数范围内没有意义.
3.
4.B
5.a=5,b=-4

21.1 二次根式
第二课时
教学内容
1. (a≥0)是一个非负数;
2.( )2=a(a≥0).
教学目的
理解 (a≥0)是一个非负数和( )2=a(a≥0),并借助它们进行计算和化简.
通过复习二次根式的定义,用逻辑推理的办法推出 (a≥0)是一个非负数,用具体数据结合算术平方根的意义导出( )2=a(a≥0);最后运用结论严谨解题.
教学重难题重要新|课|标|第|一|网
1.重点: (a≥0)是一个非负数;( )2=a(a≥0)及其运用.
2.难题、重要:用分类思想的办法导出 (a≥0)是一个非负数;用探究的办法导出( )2=a(a≥0).
教学过程
一、复习引入
(学生活动)口答
1.什么叫二次根式?
2.当a≥0时, 叫什么?当a<0时, 有意义吗?
老师点评(略).
二、探究新知
议一议:(学生分组讨论,提问解答)
(a≥0)是一个什么数呢?
老师点评:依据学生讨论和上面的训练,大家可以得出
(a≥0)是一个非负数.
做一做:依据算术平方根的意义填空:
( )2=_______;( )2=_______;( )2=______;( )2=_______;
( )2=______;( )2=_______;( )2=_______.
老师点评: 是4的算术平方根,依据算术平方根的意义, 是一个平方等于4的非负数,因此有( )2=4.
同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以
( )2=a(a≥0)
例1 计算
1.( )2 2.(3 )2 3.( )2 4.( )2
剖析:大家可以直接借助( )2=a(a≥0)的结论解题.
解:( )2 = ,(3 )2 =32( )2=325=45,
( )2= ,( )2= .
三、巩固训练
计算下列各式的值:X|k |b| 1 . c|o |m
( )2 ( )2 ( )2 ( )2 (4 )2
四、应用拓展
例2 计算
1.( )2(x≥0) 2.( )2 3.( )2
4.( )2
剖析:(1)由于x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;
(4)4x2-12x+9=(2x)2-22x3+32=(2x-3)2≥0.
所以上面的4题都可以运用( )2=a(a≥0)的要紧结论解题.
解:(1)由于x≥0,所以x+1>0
( )2=x+1
(2)∵a2≥0,∴( )2=a2
(3)∵a2+2a+1=(a+1)2
又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1
(4)∵4x2-12x+9=(2x)2-22x3+32=(2x-3)2
又∵(2x-3)2≥0
∴4x2-12x+9≥0,∴( )2=4x2-12x+9
例3在实数范围内分解下列因式:
(1)x2-3 (2)x4-4 2x2-3
剖析:
五、总结小结
本节课应学会:
1. (a≥0)是一个非负数;
2.( )2=a(a≥0);反之:a=( )2(a≥0).
六、布置作业
1.教程P8 复习巩固2.(1)、(2) P9 7.
2.选用课时作业设计.
3.课后作业:《同步练习》
第二课时作业设计
一、选择题
1.下列各式中 、 、 、 、 、 ,二次根式的个数是( ).
A.4 B.3 C.2 D.1
2.数a没有算术平方根,则a的取值范围是( ).
A.a>0 B.a≥0 C.a<0 D.a=0
二、填空题
1.(- )2=________.
2.已知 有意义,那样是一个_______数.
三、综合提升题
1.计算
(1)( )2 (2)-( )2 (3)( )2 (4)(-3 )2

2.把下列非负数写成一个数的平方的形式:
(1)5 (2)3.4 (3) (4)x(x≥0)
3.已知 + =0,求xy的值.
4.在实数范围内分解下列因式:
(1)x2-2 (2)x4-9 3x2-5
第二课时作业设计答案:
一、1.B 2.C
二、1.3 2.非负数
三、1.(1)( )2=9 (2)-( )2=-3 (3)( )2= ×6=
(4)(-3 )2=9× =6 -6
2.(1)5=( )2 (2)3.4=( )2
(3) =( )2 (4)x=( )2(x≥0)
3. xy=34=81
4.(1)x2-2=(x+ )(x- )
(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+ )(x- )

 
标签: 初中三年级
打赏
 
更多>大智教育相关文章
0相关评论

推荐图文
推荐大智教育
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  网站留言  |  RSS订阅  |  违规举报
智学网-大智教育,好的学习方法与技巧指导,我要自学网站